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1 Introduction 
One of the most common risk measures in the finance industry is Value-at-Risk (VaR). Value-at-
Risk measures the amount of potential loss that could happen in a portfolio of investments over a 
given time period with a certain confidence interval. Historically, banks have been using VaR in 
trading environments. Although VaR has been somewhat controversial as a risk measure, it is 
currently widely used within the finance industry. Also Solvency II, the regulatory framework for 
the insurance industry, uses VaR as a measure of risk. 
  
It is possible to calculate VaR in many different ways, each with their own pros and cons. Monte 
Carlo simulation is a popular method. Monte Carlo simulation can be used also for complex 
portfolios. The downside of Monte Carlo simulations is the fact that the calculation is 
computationally intensive. This can lead to a speed-accuracy trade-offs, where the timeframe 
within which the calculations need to be performed, is not sufficient for creating accurate VaR 
figures. It is also possible that the time that it takes to perform the calculation are an operational 
challenge. 
 
The following section explains a simplified implementation of a VaR model, based on Monte Carlo 
simulation. The available MATLAB and R code examples enable performance comparison of the 
model in these two popular programming environments. The final chapter demonstrates that the 
calculation time for Monte Carlo simulations can be effectively decreased by using a scalable 
distributed computing solution. 

  



2 The VaR model 
In our simplified VaR model, the value of a portfolio of financial instruments is simulated under a 
set of economic scenarios. The scenarios are based on risk factors. The risk factors are inputs to 
the valuation models of the financial instruments in the portfolio. The scenarios are created 
randomly, and all have even probability to occur. The economic scenarios are generated based on 
the estimated future volatility of the risk factors. The correlations between the risk drivers are not 
taken into account in this simplified example model. 
 
The set of financial instruments in this example is limited to a set of fixed coupon bonds and 
equity options. To simplify the calculations, the fixed coupon bonds in the example do not have 
credit risk. The risk drivers, the inputs to the pricing models of the instruments, are changed in the 
economic scenarios. As a result, the value of the portfolio of instruments will change for each 
scenario. The probability distribution of these portfolio values gives insight to the risk profile of 
the portfolio. In this example, the 0.5% percentile of the distribution is used to estimate the 99.5% 
VaR of the portfolio.  
 
 The VaR model consists of three sections: 

- run_VaR_cloudfor 

- parameters 

- bs_function 

MATLAB and R versions of the code are included in the latest Techila SDK. Download links to the 

code material can also be found on the Techila Technologies website at: 

http://www.techilatechnologies.com 

The role of each section is explained in more detail below. Underlined text refers to a source code 

file with the specified name. For example, run_VaR_cloudfor refers to source code files 

run_VaR_cloudfor.m and run_VaR_cloudfor.R. 

The run_VaR_cloudfor file contains the main function that triggers the other sections of the code.  
 
The parameters section defines the parameters that are used in the model. It starts by the 
defining the number of scenarios and the number of instruments. The market data is defined in 
the second section. A yield curve and a volatility surface are defined. In the third section of the 
code, the portfolio of instruments is defined. The option instruments are created by randomly 
creating the inputs to the black-scholes model. The bond instruments are created by randomly 
selecting a maturity date and a coupon rate. The cash flows of fixed coupon bonds are not 
scenario-dependent, and are calculated once. The cash flows will be discounted with different 
discount rates in a later section of the code. In the fourth section of the parameters function, the 
position vector is created. The position matrix defines the weight of an instrument in the total 
portfolio. The scenarios are defined in the fifth section of the code. The last part of the parameters 
section is used to define the Principal Component Analysis (PCA) factors, and volatility shock 
surface. These parameters define how the changes in risk factors are applied to the yield curve, or 
the volatility surface.  
  
The bs_function of the code is an implementation of the black-scholes model. 
 

http://www.techilatechnologies.com/matlab-vs-r-in-var-calculation/?d=varpaper


When we run the run_VaR_cloudfor function, it triggers first the parameters code. Once the 
market data, instruments, and positions are defined, the code values the portfolio of instruments 
under the current conditions. This is called the basePortfolioValue. 
 
The next section of the code will be the computationally intensive part of the code. This section 
uses a cloudfor loop to make use of distributed computing in performing the calculations. Cloudfor 
is a function that is available in the MATLAB toolbox and R package of the Techila Distributed 
Computing Engine (TDCE). In this section of the code, all the instruments are valued under all 
scenarios. When multiplied with the position matrix, this results in the portfolio value under the 
economic scenarios. This vector of portfolio values can be used for risk analysis, and to estimate 
the VaR the portfolio. 

  



3 Results 
When using Techila Distributed Computing Engine 
(TDCE) to calculate the VaR measures, the performance 
gains will depend on following: 
 

 Available computing resources 

 Total number of scenarios computed  

 Amount of data transferred 

 How many scenarios are computed in each Job  

For this paper, we run the MATLAB and R programming 
language versions of the VaR code. In our test run, we 
computed 600.000 scenarios for 12.000 instruments. 
We used a test environment with 400 Techila Worker 
CPU cores. Each Job computed 500 scenarios. The 
performance metrics for the test run are described 
below. 
 
MATLAB vs R 
 
CPU time gives us a rough  approximation on how  long  it  
would  have  taken  to  run a simulation on a  single  CPU  
core  machine  with  similar  hardware  specifications.  
 
When we run the MATLAB code, it used 8 h 57 m 37 s 
CPU time. 
 
When we run the R version of the same code, the CPU 
time used was 1 d 12 h 10 m 29 s. 
 
This shows that the performance of R programming 
language is not as good as the performance of MATLAB. 
 
MATLAB vs R with scalable distributed computing 
 
Techila Distributed Computing Engine makes it easy to 
scale out to a distributed computing engine. The MATLAB 
toolbox and the R package of TDCE enable scalable 
computing directly from MATLAB and R Studio. 
 
When we run of the MATLAB code using 400 Techila 
Workers, the computations were completed in 1 m 39 s. 
  
When we run of the R version of the same code in the 
same TDCE system, these R computations were 
completed in 6 m 7 s. 

Figure 1. MATLAB computation results 

Figure 2. R computation results 

http://www.techilatechnologies.com/help/techila-distributed-computing-engine/introduction-techila-distributed-computing-engine.html#_projects_and_jobs
http://www.techilatechnologies.com/help/techila-distributed-computing-engine/introduction-techila-distributed-computing-engine.html#_techila_distributed_computing_engine_system


4 Conclusion 
A VaR calculation that use Monte Carlo simulation can be time consuming. The operational 
processes around VaR calculations can benefit, if there is an easy way to accelerate the Monte 
Carlo simulations, and cut down the time from hours to minutes. Techila Distributed Computing 
Engine is a next generation grid that enables fast simulation without the complexity of traditional 
high-performance computing. 
 
In addition to speed, TDCE offers also other benefits, such as real-time access to intermediate 
results. This can help the user to spot potential data or model issues early, which supports 
productivity and usability. 
 
The reduction of the waiting time of the VaR calculations and enablement of interactive use of the 
simulation model can also more extensive risk analysis. 
 
Fast computing also enables new ways of working. Fast VaR calculations using TDCE can, for 
example, be used to calculate standalone VaR for a smaller amount of risk factors (for example, 
calculate an interest rate VaR per currency, instead of one interest rate VaR for the portfolio). The 
increased calculation speed can also enable (or simplify) the calculation of VaR sensitivities, the 
change of the VaR, when the underlying risk factors move. Especially VaR sensitivities are very 
useful for risk management purposes, because the VaR sensitivities can predict what will happen 
with your risk profile during stressed market circumstances. A reduced calculation time can also 
be used for portfolio optimization, because it will be easier to calculate the portfolio VaR with 
different instrument weightings. 
 
As we saw in our tests, there is a substantial difference in the processor time usage of MATLAB 
and R programming language in these VaR examples. The run takes a significant time in both 
languages, but MATLAB’s 9 hours is much faster than R’s 1 day 12 hours. If we calculate the VaR 
measures sequentially on a single computer, this difference could render the use of the slower 
programming language not feasible. 
 
However, when we use TDCE and distributed computing to calculate the models, we can adjust 
the degree of parallelism that we would like to use. In our tests, TDCE distributed the work to a 
computing infrastructure with 400 CPU cores. This reduced the wall-clock times and the time 
difference between the MATLAB and R runs. It can be said that the VaR calculation was completed 
quickly in both languages. MATLAB: 1m 39s. R programming language: 6m 7s.  
 
From a performance point of view, we can say that the use of TDCE and distributed computing can 
reduce the effect of the performance differences of the programming languages. The underlying 
technical performance differences still do remain, but they will have a less significant impact to 
the efficiency of the financial engineer’s work. This will also allow the user to choose the language 
that works best for the task that he has on his hands. 
 
The study of different computing infrastructures is not included in the scope of this paper. 
Information on the price-performance aspects can be found in the Techila Technologies report 
“Cloud HPC In Finance”. 
 
  

http://www.techilatechnologies.com/finance-cloud-hpc-benchmark/

